\qquad

Boyle's LAW

Overview

- Boyle's Law states that there is an inverse relationship between pressure (P) and volume (V) when all other variables are held constant.
- This means that when either P or V goes up, the other goes down.

FORMULA

- The mathematical formula for Boyle's Law is: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
- This relationship (Boyle's Law) tells us that if something happens to a gas' pressure or volume, the pressure of a gas before multiplied by its volume before must equal the pressure after multiplied by the volume after.

EXAMPLES

- If you push down on a capped off syringe with a gas inside, the pressure on the gas goes up.
- This is due to the increased numbers of collisions with the sides of the container, while the total volume occupied by the gas decreases.
- If you pull on the syringe, the gas' volume will go up, but its pressure will go down.
- This is due to the decreased number of collisions with the sides of the container.
- See figure 5.1. This graph shows the inverse relationship between pressure and volume for a gas

- \quad See example 5.2 to see how Boyle's Law is used in solving equations.

Example 5.2

Boyle's Law

A woman has an initial lung volume of 2.75 L , which is filled with air at an atmospheric pressure of 1.02 atm . If she increases her lung volume to 3.25 L without inhaling any additional air, what is the pressure in her lungs?

To solve the problem, first solve Boyle's law (Equation 5.2) for P_{2} and then substitute the given quantities to calculate R.

SOLUTION

$R_{1} V_{1}=P_{2} V_{2}$
$\boldsymbol{R}_{2}=\frac{V_{1}}{V_{2}} R_{1}$
$=\frac{2.75 \mathrm{E}}{3.25 \mathrm{E}} 1.02 \mathrm{~atm}$
$=0.863 \mathrm{~atm}$

FOR PRACTICE 5.2 A snorkeler takes a syringe filled with 16 mL . of air from the surface, where the pressure is 1.0 atm , to an unknown depth. The volume of the air in the syringe at this depith is 7.6 mi.e What is the presosere at the sundinavn depth? If the pressure increases by 1 atm for every additional 10 m of depth, how deep is the snorkeler?

